Neutrino Factory in Space: Elementary Particles From the Depths of Our Universe

Blazar Accelerates Cosmic Rays

Embark on a Journey through the Universe: The Discovery of the Extragalactic Neutrino Factory. Credit: © Benjamin Amend

For the first time, researchers have uncovered the origin of neutrinos, elementary particles that reach our planet from the depths of the universe.

Highly energetic and difficult to detect, neutrinos travel billions of light years before reaching Earth. Although it is known that these elementary particles originate from the depths of our Universe, their exact origin remains a mystery. An international team of researchers, led by the University of Würzburg and the University of Geneva (UNIGE), sheds light on one aspect of the puzzle: neutrinos are thought to have been born in a blazar, the core of a galaxy filled with supermassive black holes. These results were published on July 14 in the journal Astrophysics Journal Letter.

The atmosphere of our planet is constantly being bombarded by cosmic rays. It consists of electrically charged particles with very high energies — up to 1020 electron volts. For reference, that’s a million times more than the energy achieved in the world’s most powerful particle accelerator,

CERN
Founded in 1954 and headquartered in Geneva, Switzerland, CERN is a European research organization that operates the Large Hadron Collider, the world’s largest particle physics laboratory. Its full name is the European Organization for Nuclear Research (French: Organization européenne pour la recherche nucléaire) and the acronym CERN comes from the French Conseil Européen pour la Recherche Nucléaire.

” data-gt-translate-attributes=”[{” attribute=””>CERN’s Large Hadron Collider near Geneva. The incredibly energetic particles come from deep outer space and have traveled billions of light years. Where do they originate, what shoots them through the Universe with such tremendous force? These questions have remained among the greatest challenges of astrophysics for over a century.

Cosmic rays’ birthplaces produce neutrinos. These neutral particles are very difficult to detect. They have almost no mass and barely interact with matter. They race through the Universe and can travel right through galaxies, planets, and the human body almost without a trace. “Astrophysical neutrinos are produced exclusively in processes involving cosmic ray acceleration,” explains astrophysics Professor Sara Buson from Julius-Maximilians-Universität (JMU) Würzburg in Bavaria, Germany. This is precisely what makes these neutrinos unique messengers paving the way to pinpoint cosmic ray sources.

A step forward in a controversial debate

Despite the vast amount of data that astrophysicists have collected, the association of high-energy neutrinos with the astrophysical sources that originate them has remained an unsolved problem for years. Sara Buson has always considered it a major challenge. It was in 2017 that the researcher and collaborators first brought a blazar (TXS 0506+056) into the discussion as a potential neutrino source in the journal Science. Blazars are active galactic nuclei powered by supermassive black holes that emit much more radiation than their entire galaxy. A scientific debate was sparked by the publication about whether there truly is a connection between blazars and high-energy neutrinos.

Following this first encouraging step, in June 2021 Prof. Buson’s group began an ambitious multi-messenger research project with the support of the European Research Council. This involves analyzing various signals (“messengers,” e.g. neutrinos) from the Universe. The main goal is to shed light on the origin of astrophysical neutrinos and possibly establish blazars as the first source of extragalactic high-energy neutrinos with high certainty.

The project is now showing its first success: In the journal Astrophysical Journal Letters, Sara Buson, along with her group, the former postdoctoral researcher Raniere de Menezes (JMU) and Andrea Tramacere from the University of Geneva, reports that blazars can be confidently associated with astrophysical neutrinos at an unprecedented degree of certainty.

Revealing the role of blazars

Andrea Tramacere is one of the experts in numerical modeling of acceleration processes and radiation mechanisms acting in relativistic jets — outflows of accelerated matter, approaching the speed of light — in particular blazar jets. “The accretion process and the rotation of the

Despite this success, the research team believes that this first sample of objects is only the ‘tip of the iceberg’. This work has enabled them to gather “new observational evidence”, which is the most important ingredient for building more realistic models of astrophysical accelerators. “What we need to do now is to understand what the main difference is between objects that emit neutrinos and those that do not. This will help us to understand the extent to which the environment and the accelerator ‘talk’ to each other. We will then be able to rule out some models, improve the predictive power of others and, finally, add more pieces to the eternal puzzle of cosmic ray acceleration!”

Reference: “Beginning a Journey Across the Universe: The Discovery of Extragalactic Neutrino Factories” by Sara Buson, Andrea Tramacere, Leonard Pfeiffer, Lenz Oswald, Raniere de Menezes, Alessandra Azzollini and Marco Ajello, 14 July 2022, Astrophysical Journal Letters.
DOI: 10.3847/2041-8213/ac7d5b


#Neutrino #Factory #Space #Elementary #Particles #Depths #Universe

Comments

Popular posts from this blog

Keary opens up about battle concussion after 'nervous' return, revealing teammates preparing to rest